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A quiver Q
def⇐⇒ A directed diagram.

A Dynkin quiver ∆⃗
def⇐⇒ A quiver whose underlying diagram is a simply-laced Dynkin diagram.

Aµ : · · ·

Dµ :

· · ·

Eµ :

· · ·

Figure: Simply-laced Dynkin diagrams

Dynkin quivers (diagrams) appear in representation theory, singularity the-
ory, Lie algebra, algebraic geometry, etc.
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We consider ADE singularities f̃ : C3 −→ C defined as follows:

Aµ : f̃(x1, x2, x3) = xµ+1
1 + x22 + x23

Dµ : f̃(x1, x2, x3) = xµ−1
1 + x1x

2
2 + x23

E6 : f̃(x1, x2, x3) = x41 + x32 + x23

E7 : f̃(x1, x2, x3) = x31 + x1x
3
2 + x23

E8 : f̃(x1, x2, x3) = x51 + x32 + x23

∃ equivalent structures between Dynkin quivers and ADE singularities.

e.g.)

generalized root systems,

complex manifolds,

Frobenius manifolds,

triangulated categories, etc.

We focus on Frobenius manifolds and triangulated categories.
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Mirror symmetry
“⇐⇒” an equivalence between algebra and geometry.

There are several ways to formulate mirror symmetry.

A mirror partner of an ADE singularity f̃ is a pair (f,Gf ) consisting of

f ∈ C[z1, z2, z3] : an invertible polynomial of chain type,

Gf : the group of maximal diagonal symmetries of f .

The classical mirror symmetry is an isomorphism of Frobenius manifolds.
The homological mirror symmetry is an equivalence of triangulated cate-
gories.
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Classical mirror symmetry (CMS):

A Frobenius manifold M = (M,η, ◦, e, E)

“
def⇐⇒” a complex manifold M equipped with

η : TM × TM −→ OM : an OM -bilinear form,
◦ : TM × TM −→ TM : an OM -bilinear product,
e,E ∈ Γ(M, TM ) : two certain vector fields

satisfying some axioms.

∃ 3 ways of constructions of Frobenius manifolds:

(A) MA
(f,Gf )

: the FJRW theory for (f,Gf ) (Fan–Jarvis–Ruan)

(B) MB
(f̃ ,ζ)

: the theory of primitive forms for f̃ (K. Saito)

(R) MR
(R(∆⃗),c)

: the Weyl group invariant theory for ∆⃗

(K. Saito, Saito–Yano–Sekiguchi ,Dubrovin)

∃ isomorphisms of Frobenius manifolds:

MA
(f,Gf )

CMS∼= MB
(f̃ ,ζ)

∼=MR
(R(∆⃗),c)
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Homological mirror symmetry (HMS):

3 kinds of triangulated categories:

(A) HMF
Lf

S (f) : the homotopy category of matrix factorizations

for (f,Gf )

(B) DbFuk→(f̃) : the derived directed Fukaya category for f̃

(R) Db(∆⃗) : the derived category for ∆⃗

∃ equivalences of triangulated categories:

HMF
Lf

S (f)
HMS∼= DbFuk→(f̃) ∼= Db(∆⃗)

by P. Seidel, Kajiura–Saito–Takahashi.
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Problem (HMS =⇒ CMS ?)

How do we obtain CMS from HMS?

How do we obtain geometric invariants of Frobenius manifolds from
triangulated categories?
e.g.) exponents, monodromy data, discriminant, etc...

It is expected that stability conditions on a triangulated category gives an
answer (in our setting)!

Remark: There are other approaches to the above Problem.
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D : C-linear triangulated category of finite type.

i.e., ∀ X,Y ∈ D, HomD(X,Y ) is a C-vector space and

dimC
⊕
p∈Z

HomD(X,Y [p]) <∞.

Definition 1 (cf. Beilinson–Bernstein–Deligne, Bridgeland).

A ⊂ D is a heart (of a bounded t-structure) in D if

∀ E,F ∈ A, HomD(E,F [p]) ∼= 0 for p < 0.

∀ E ∈ D, E 6= 0, ∃ k1 > k2 > · · · > kn : integers
∃ sequence of exact triangles

0 = F0 F1 F2 · · · Fm−1 = EFm

A1 A2 Am

s.t. Ai ∈ A[ki] for i = 1, . . . , n.

⇝ A heart A has a structure of an abelian category.
⇝ K0(A) ∼= K0(D) : the Grothendieck group of A (Z-module).
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Definition 2 (Bridgeland).

1 A : heart in D.
A stability function Z : K0(A) −→ C is a group homomorphism s.t.

Z(E) ∈ H−, E ∈ A, E 6= 0,

where H− := {re
√
−1πϕ ∈ C | R > 0, 0 < ϕ ≤ 1}.

2 A stability condition on D is a pair σ = (Z,A) consisting of

A : heart in D and,
Z : K0(A) −→ C : stability function satisfying the
“Harder–Narasimhan property” and the “support condition”.

Examples:

1 X : nonsingular projective curve, D = DbCoh(X)

The slope stability induces a stability condition on D.

2 A : finite dimensional algebra, D = Dbmod(A)

A King’s stability induces a stability condition on D.

10 / 25



Background
Part I : Full σ-exceptional collections

Part II : Gamma integral structure

Dynkin quivers and ADE singularities
Mirror symmetry
Stability conditions

Fix a stability condition σ = (Z,A) on D.

The phase ϕ(E) ∈ (0, 1] of E ∈ A is ϕ(E) :=
1

π
ArgZ(E).

E ∈ A is σ-(semi)stable of phase ϕ ∈ (0, 1]
def⇐⇒ ∀ A ⊂ E (A 6= 0), ϕ(A) < ϕ(E) (ϕ(A) ≤ ϕ(E)).

E ∈ D is σ-(semi)stable of phase ϕ ∈ R
def⇐⇒ ∃ E′ ∈ A : σ-(semi)stable of phase ψ ∈ (0, 1], ∃ n ∈ Z

s.t. E ∼= E′[n] and ϕ = ψ + n.

Put
Stab(D) := {stability condition on D}.

∃ natural topology on Stab(D).

Theorem 3 (Bridgeland).

The forgetful map

Z : Stab(D) −→ HomZ(K0(D),C), (Z,A) 7→ Z,

is a local homeomorphism.
In particular, ∃ complex strutcure on Stab(D).
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Problems

1 What is the complex manifold Stab(Db(∆⃗))?

⇝ It is expected that Stab(Db(∆⃗)) is related to a deformation

theory of f̃ .
⇝ ∃ Frobenius structure on Stab(Db(∆⃗))?

2 What is a stability condition on Db(∆⃗) in terms of ∆⃗?

What I studied

In order to construct a Frobenius structure on Stab(D), I studied stability

conditions onDb(∆⃗) based on the correspondences between Dynkin quivers

∆⃗ and ADE singularities f̃ .

More precisely,

1 I gave a description of Stab(Db(∆⃗)) by full exceptional collections.

2 (Joint work with Atsushi Takahashi)
We show that the stability function of Kajiura–Saito–Takahashi’s
stability condition is given by the exponential period associated to a
primitive form.
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D : C-linear triangulated category of finite type.

Definition 4.

1 An object E ∈ D is exceptional if

HomD(E,E[p]) ∼=

{
C, p = 0,

0, p 6= 0.

2 An ordered set E = (E1, . . . , Eµ) of exceptional objects is called
exceptional collection if

HomD(Ei, Ej [p]) ∼= 0, i > j, and p ∈ Z.

3 An exceptional collection E is full if the smallest full triangulated
subcategory of D containing E is equivalent to D.
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Recall that in the derived category Db(A) of an abelian category A,

ExtpA(E,F )
∼= HomDb(A)(E,F [p]), p ∈ Z, E, F ∈ A.

Definition 5 (Macr̀ı).

A full exceptional collection E = (E1, . . . , Eµ) is Ext if

HomD(Ei, Ej [p]) ∼= 0 for p ≤ 0.

Proposition 6 (Macr̀ı).

E = (E1, . . . , Eµ) : full Ext-exceptional collection in D.
The extension closure 〈E〉ex ⊂ D is a heart s.t.

Sim 〈E〉ex = {E1, . . . , Eµ}.

Corollary 7 (Macr̀ı).

E = (E1, . . . , Eµ) : full exceptional collection in D.
∃ σ : stability condition on D s.t. E1, . . . , Eµ are σ-stable.
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Q = (Q0, Q1) : acyclic quiver and Q0 = {1, . . . , µ}.

Question

When is a heart A in Db(Q) given by a full Ext-exceptional collection?

King–Qiu proved that if a heart A is obtained from mod(CQ) by iterated
simple tilts, then A = 〈SimA〉ex.

Theorem A (O).

Q : acyclic quiver satisfying

(A1) For i, j ∈ Q0, |{i −→ j ∈ Q1}| ≤ 1.

(A2) For i, j, k ∈ Q0, ∃ i −→ j, ∃ j −→ k =⇒ ∄ i −→ k.

A : heart in Db(Q).

A is obtained from mod(CQ) by iterated simple tilts.

=⇒ ∃ E = (E1, . . . , Eµ) : full Ext-exceptional collection s.t.

A = 〈E〉ex,
SimA = {E1, . . . , Eµ}.
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Definition 8 (Dimitrov–Katzarkov).

σ : stability condition on D,
E = (E1, . . . , Eµ) : exceptional collection in D.
E is σ-exceptional collection if

E1, . . . , Eµ are σ-stable,

E is Ext, and

∃ r ∈ R s.t. r < ϕ(Ei) ≤ r + 1 for i = 1, . . . , µ.

Macr̀ı and Dimitrov–Katzarkov showed that, for the ℓ-Kronecker quiver

and the affine A
(1)
1,2 quiver, any stability condition σ on Db(Q) has a full

σ-exceptional collection, respectively.

Theorem B (O).

∆⃗ : Dynkin quiver.

For each stability condition σ on Db(∆⃗), ∃ full σ-exceptional collection.
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FEC(∆⃗) :=

{
E = (E1, . . . , Eµ)

∣∣∣∣ E : full exc coll in Db(∆⃗)

Ei ∈ mod(C∆⃗)

}/
∼= .

U. Seidel proved

|FEC(∆⃗)| = µ!hµ

|W |
<∞,

where h : the Coxeter number of ∆⃗,

W : the Weyl group for ∆⃗.

For E = (E1, . . . , Eµ) ∈ FEC(∆⃗), define an open subset ΘE by

ΘE := {σ ∈ Stab(Db(∆⃗)) | E1, . . . , Eµ are σ-stable} ⊂ Stab(Db(∆⃗)).

Theorem C (O).

The set {ΘE}E∈FEC(∆⃗) is a finite open covering :

Stab(Db(∆⃗)) =
⋃

E∈FEC(∆⃗)

ΘE .
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f̃ : ADE singularity of type corresponding to ∆⃗.

B(f̃) := the set of distinguished basis of vanishing cycles for f̃ .

The group Zµ2 acts on B(f̃) as the change of signs.

(Gusein-Zade, Crawley-Boevey) ∃ bijection

B(f̃)/Zµ2
1:1−→ FEC(∆⃗), L 7→ EL

Hence,
Stab(Db(∆⃗)) =

⋃
L∈B(f̃)/Zµ

2

ΘEL .

To understand this equality (or a Frobenius structure on Stab(Db(∆⃗)))
more precisely, we need to study what is a stability function Z : K0(A) −→
C for each stability condition σ = (Z,A).
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A polynomial f ∈ C[z1, . . . , zn] is an invertible polynomial of chain
type if

f(z1, . . . , zn) := za11 z2 + · · ·+ z
an−1

n−1 zn + zann , ai ∈ Z≥2.

Define a C-vector space Ωf by

Ωf := Ωn(Cn)/df ∧ Ωn−1(Cn).

∃ Q-grading on Ωf given by fractional weights of f .

The group of maximal diagonal symmetries Gf of f is defined as

Gf := {(λ1, . . . , λn) ∈ (C∗)n | f(λ1z1, . . . , λnzn) = f(z1, . . . , zn)} .

Define a Q-graded C-vector space Ωf,Gf
by

Ωf,Gf
:=

⊕
g∈Gf

Ωf,g, Ωf,g := (Ωfg )Gf (−age(g)),

where for g ∈ Gf ,

fg := f |{z∈Cµ|g·z=z},

age(g) ∈ Q is the age of g.
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The C-vector space Ωf,Gf
for (f,Gf ) is an analogue of the total Hodge

cohomology H∗(X;C) for an algebraic variety X.

∃ Sf,Gf
: Ωf,Gf

× Ωf,Gf
−→ C : C-bilinear form

s.t. Sf,Gf
on Ωf,Gf

is an analogue of the polarization on H∗(X;C).

For an invertible polynomial of chain type f , define f̃ by

f̃(x1, . . . , xn) := xa11 + x1x
a2
2 + · · ·+ xn−1x

an
n .

Kreuzer showed ∃ isomorphism of Q-graded C-vector spaces

mir : Ωf,Gf

∼=−→ Ωf̃ .

Proposition 9 (O–Takahashi).

mir : (Ωf,Gf
,Sf,Gf

)
∼=−→ (Ωf̃ ,Sf̃ )
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Theorem 10 (O–Takahashi, Aramaki–Takahashi).

∃ ChΓ : K0(HMF
Lf

S (f)) −→ Ωf,Gf
: group homomorphism

s.t. the following diagram commutes:

(K0(HMF
Lf

S (f)), χ)
∼= due to AT //

ChΓ

��

(Hn(Cn,Re(f̃) � 0;Z),S)

D
��

(Ωf,Gf
,Sf,Gf

)
mir // (Ωf̃ ,Sf̃ )

,

where

D : the “Poincaré duality map”,

χ : the Euler form on K0(HMF
Lf

S (f)),

S : the “Seifert form” on Hn(Cn,Re(f̃) � 0;Z).

Moreover, mir : ImChΓ ∼= ImD is equivariant w.r.t. a cyclic group action.

For Γ ∈ H3(C3,Re(f̃) � 0;Z), the exponential period mapping

∫
Γ

e−f̃ζ

can be calculated as the Gamma function and fractional weights of (f,Gf ).
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Theorem D (O–Takahashi, Kajiura–Saito–Takahashi).

∆⃗ : Dynkin quiver,
f̃ : C3 −→ C : ADE singularity.

∃ σ0 = (Z,A) ∈ Stab(Db(∆⃗)) s.t.

1 (KST) A ∼= mod(C∆⃗principal) and,

2 (OT) Z : K0(Db(∆⃗)) ∼= H3(C3,Re(f̃) � 0;Z) −→ C is

Z(E) =

∫
ψ0(E)

e−f̃ζ,

where

ψ0 : K0(Db(∆⃗))
∼=−→ H3(C3,Re(f̃) � 0;Z) is an isomorphism,

ζ = [dx1 ∧ dx2 ∧ dx3] is a primitive form.
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Thank you very much !
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