The space of stability conditions for Dynkin quivers Takumi OTANI (Osaka University) This poster is supported by KAKENHI KIBAN (S) / Principal Investigator: Atsushi TAKAHASHI

1. Mirror Symmetry

A Dynkin quiver $\vec{\Delta}$ is an oriented ADE diagram:

Mirror symmetry is an equivalence between complex algebraic

2. Stability Condition

- <u>"Definition</u> (Bridgeland) A stability condition (Z, \mathcal{P}) on a triangulated category \mathcal{D} consists of
 - a group homomorphism $Z \colon K_0(\mathcal{D}) \longrightarrow \mathbb{C}$ and,
- a family of additive full subcategories $\mathcal{P} = \{\mathcal{P}(\phi)\}_{\phi \in \mathbb{R}}$ satisfying some axioms.

 \rightsquigarrow An object $E \in \mathcal{P}(\phi)$ is called σ -semistable.

geometry and symplectic geometry. Dynkin quivers and period maps play an important role in mirror symmetry. There are interesting correspondences:

Triangulated category (Homological mirror symmetry)

An additive category equipped with a triangle structure.

- $\mathcal{D}^b(\vec{\Delta})$: derived category of $\mathbb{C}\vec{\Delta}$ -modules,

Bridgeland also showed $Stab(\mathcal{D})$ is a complex manifold.

Conjecture

(cf. Takahashi, Bridgeland–Qiu–Sutherland, Haiden–Katzarkov–Kontsevich)

There exists a biholomorphic map

 $\Phi \colon \operatorname{Stab}(\mathcal{D}^b(\vec{\Delta})) \xrightarrow{\cong} M_{(f,\zeta)}$

such that the group homomorphism $Z: K_0(\mathcal{D}) \longrightarrow \mathbb{C}$ is given by the the exponential period map associated to ζ under the isomorphism. In particular, $\operatorname{Stab}(\mathcal{D}^b(\vec{\Delta}))$ has a structure of a Frobenius manifold.

3. **Results**

Definition

A full exceptional collection $\mathcal{E} = (E_1, \ldots, E_\mu)$ in \mathcal{D} satisfies (1) $\operatorname{Hom}_{\mathcal{D}}^{\bullet}(E_i, E_i) \cong \mathbb{C}$ for all $i = 1, \ldots, \mu$,

• $\mathcal{D}^b \operatorname{Fuk}^{\rightarrow}(f)$: derived Fukaya–Seidel category,

- $HMF_S^{L_W}(W)$: category of mateix factorizations.
- $(= \mathcal{D}^b Coh(X) :$ derived category of coherent sheaves on X)

 $\mathcal{D}^b(\vec{\Delta}) \simeq \mathcal{D}^b \operatorname{Fuk}^{\rightarrow}(f) \stackrel{MS}{\simeq} \operatorname{HMF}^{L_W}_{S}(W)$

Frobenius manifold (Classical mirror symmetry)

A complex manifold equipped with a complex differential geometric structure. There are several constructions:

- $M_{(R(\vec{\Delta}),c)}$: Weyl group invariant theory,
- $M_{(f,\zeta)}$: Deformation theory with a primitive form ζ ,
- $M_{(W,G_W)}$: FJRW theory (cf. Gromov–Witten theory),
- Information geometry.

 $M_{(R(\vec{\Delta}),c)} \stackrel{\widetilde{\Pi}_{\zeta}}{\cong} M_{(f,\zeta)} \stackrel{MS}{\cong} M_{(W,G_W)}$ The isomorphism $\Pi_{\mathcal{C}}$ is given by the period map.

 $\operatorname{Hom}_{\mathcal{D}}^{\bullet}(E_i, E_j) \cong 0$ for i > j and, (2)

 \mathcal{D} is the smallest triangulated category containing \mathcal{E} . (3)

Define the set $FEC(\vec{\Delta})$, which is finite, by

$$\operatorname{FEC}(\vec{\Delta}) \coloneqq \left\{ \mathcal{E} = (E_1, \dots, E_{\mu}) \middle| \begin{array}{c} \mathcal{E} : \text{ full exc coll in } \mathcal{D}^b(\vec{\Delta}) \\ E_i \in \operatorname{mod}(\mathbb{C}\vec{\Delta}) \end{array} \right\} \middle/ \cong .$$

It is known that the set $\mathcal{B}(f)$ of distinguished bases of vanishing cycles (up to orientation) can be identified with $FEC(\vec{\Delta})$:

$$\mathcal{B}(f) \longrightarrow \operatorname{FEC}(\vec{\Delta}), \quad \mathcal{L} \mapsto \mathcal{E}_{\mathcal{L}}$$

Theorem [O]

Let $\Theta_{\mathcal{E}} := \{ \sigma \in \operatorname{Stab}(\mathcal{D}^b(\vec{\Delta})) \mid E_1, \ldots, E_\mu \text{ are } \sigma\text{-stable} \}.$ The finite set $\{\Theta_{\mathcal{E}_{\mathcal{L}}}\}_{\mathcal{L}\in\mathcal{B}(f)}$ is an open covering :

$$\operatorname{Stab}(\mathcal{D}^b(\vec{\Delta})) = \bigcup_{\mathcal{L}\in\mathcal{B}(f)} \Theta_{\mathcal{E}_{\mathcal{L}}}.$$

Mirror symmetry provides rich topics in algebraic geometry:

- Semi orthogonal decompositions,
- Birational geometry,
- Gamma integral structure and Hodge theory,
- Categorical dynamics, etc.

From the viewpoint of mirror symmetry, it is expected that the Frobenius manifolds from the triangulated categories by stability conditions.

At the "origin" of $M_{(f,\zeta)}$, we analyzed the certain stability condition constructed by Kajiura–Saito–Takahashi.

Theorem [O–Takahashi, Kajiura–Saito–Takahashi]

There is a stability condition $\sigma_0 = (Z, \mathcal{P})$ on $\mathcal{D}^b(\Delta)$ such that (KST) Any indecomposable objects are σ_0 -stable, (OT) $Z: K_0(\mathcal{D}^b(\vec{\Delta})) \longrightarrow \mathbb{C}$ is given by the exponential period map associated to ζ .

Session "Young Mathematicians' Challenge" 2023