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1. Mirror Symmetry 2. Stability Condition
A Dynkin quiver A is an oriented ADE diagram: ~ “Definition” (Bridgeland)
Ao oo oo (n>1) A stability condition (Z,P) on a triangulated category D con-

. sists of
DL w=a

e a group homomorphism Z: Ky(D) — C and,

E,: ' (1= 6,7,8) e a family of additive full subcategories P = {P ()} ser
I satisfying some axioms.

Mirror symmetry is an equivalence between complex algebraic |~ An object £/ € P(¢) is called o-semistable.

geometry and symplectic geometry. Dynkin quivers and period

Bridgeland also showed Stab(D) is a complex manifold.
maps play an important role in mirror symmetry. There are in-

Conjecture

tereStmg correspondences: (cf. Takahashi, Bridgeland—Qiu—Sutherland, Haiden—Katzarkov—Kontsevich)

Representation Theory There exists a biholomorphic map
(Dynkin quiver A D Stab(D'(A)) — M,
/ Period Map \ such that the group homomorphism Z: Ky(D) — Ciis

given by the the exponential period map associated to ¢

Complex Algebraic Geometry HMS S}_/mplect_ic Geometry under the isomorphism.
(W, Gw) <> (simple singularity f) | - |
(simple singularity f) < (W, Gw) In particular, Stab(D"(A)) has a structure of a Frobenius
CMS manifold.
Triangulated category 3 Results
(Homological mirror symmetry) D P
An additive category equipped with a triangle structure. - Lennition _ . . -
A full exceptional collection & = (Ey, ..., E,) in D satisfies

o Db(ﬁ) - derived category of CA-modules,

e D'Fuk™(f) : derived Fukaya—Seidel category,

o HMF" (W) : category of mateix factorizations.

(= D'Coh(X) : derived category of coherent sheaves on X)

DYA) ~ D'Fuk(f) ~ HMFLY (W)

(1) Homyh(FE;, E;)) = Cforalle=1,...,pu,
(2) Homip(E;, E;) =0 for i > j and,
(3) D is the smallest triangulated category containing &£.

Define the set FEC(&), which is finite, by

SR B E : full exc coll in Db(ﬁ)}/ ~
FEC(A) = {5 —(E\,...,E) B e omod(CE) ~
It is known that the set B(f) of distinguished bases of vanishing
cycles (up to orientation) can be identified with FEC(A):

Frobenius manifold (Classical mirror symmetry)

A complex manifold equipped with a complex differential

geometric structure. There are several constructions: ~
o M<R<5) 0 Weyl group invariant theory, B(f) — FEC(A), L&

M : Deformation theory with a primitive form ¢, Theorem [O]

o Muva, : FIRW theory (cf. Gromov-Witten theory),
e [nformation geometry.

Let O¢ = {0 € Stab(D(A)) | Ey, .. ., B, are o-stable}.
The finite set {Og, }rep(s) is an open covering

M -
M(R(&),c) = Mire) = Muvay) Stab(D(A)) = U Og,.
The isomorphism ﬁg is given by the period map.

At the “origin” of M), we analyzed the certain stability con-
dition constructed by Kajiura—Saito—Takahashi.

Theorem [O-Takahashi, Kajiura—Saito—Takahashi]

Mirror symmetry provides rich topics in algebraic geometry:
e Semi orthogonal decompositions,

e Birational geometry,
e Gamma integral structure and Hodge theory, There is a stability condition oy = (Z, P) on D’(A) such that
o (ategorical dynamics, etc. (KST) Any indecomposable objects are o-stable,

(OT) Z: Ky(D"A)) —» C is given by the exponential period

From the viewpoint of mirror symmetry, it is expected that the map associated to (.

Frobenius manifolds from the triangulated categories by stability
conditions.
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