The space of stability conditions for Dynkin quivers Takumi OTANI (Osaka University)

1. Dynkin Quiver

Dynkin quiver $\vec{\Delta} \stackrel{\text{def}}{\iff}$ An oriented ADE diagram:

Dynkin quivers are closely related to polynomials of type ADE (simple singularities) $f : \mathbb{C}^3 \longrightarrow \mathbb{C}$.

Theorem [Bridgeland]

D: C-linear triangulated category of finite type
1) ∃ topology on Stab(D).
2) The map
Z: Stab(D) → Hom_Z(K₀(D), C), (Z, P) → Z,
is local homeomorphism.

In particular, $\operatorname{Stab}(\mathcal{D})$ is a complex manifold.

Macri studied stability conditions associated with full exceptional collections.

Theorem [Seidel]

 $\mathcal{D}^b(\vec{\Delta}) = \mathcal{D}^b \operatorname{mod}(\mathbb{C}\vec{\Delta})$: derived category of $\mathbb{C}\vec{\Delta}$ -modules, $\mathcal{D}^b\operatorname{Fuk}^{\rightarrow}(f)$: derived Fukaya–Seidel category for f, $\mathcal{D}^b(\vec{\Delta}) \simeq \mathcal{D}^b\operatorname{Fuk}^{\rightarrow}(f).$

 $\mathcal{D}^b(\vec{\Delta})$ is decomposed by a full exceptional collections.

Definition

 $\ensuremath{\mathcal{D}}$: triangulated category.

A full exceptional collection $\mathcal{E} = (E_1, \ldots, E_\mu)$ in \mathcal{D} satisfies

- (1) $\operatorname{Hom}_{\mathcal{D}}^{\bullet}(E_i, E_i) \cong \mathbb{C}$ for all $i = 1, \ldots, \mu$,
- (2) $\operatorname{Hom}_{\mathcal{D}}^{\bullet}(E_i, E_j) \cong 0$ for i > j and,
- (3) \mathcal{D} is the smallest triangulated category containing \mathcal{E} .

$$\operatorname{FEC}(\vec{\Delta}) \coloneqq \left\{ \mathcal{E} = (E_1, \dots, E_{\mu}) \middle| \begin{array}{c} \mathcal{E} : \text{ full exc coll in } \mathcal{D}^b(\vec{\Delta}) \\ E_i \in \operatorname{mod}(\mathbb{C}\vec{\Delta}) \end{array} \right\} \middle/ \cong$$

Based on his study, Dimitrov–Katzarkov introduced the notion of a full σ -exceptional collection for a stability condition σ . $\begin{array}{c} \underline{\text{Definition}} \ (\text{Dimitrov-Katzarkov cf. Macri}) \\ \sigma = (Z, \mathcal{P}) : \text{stability condition on } \mathcal{D}. \\ \text{A full } \sigma\text{-exceptional collection } \mathcal{E} = (E_1, \ldots, E_\mu) \text{ satisfies} \\ (1) \quad E_1, \ldots, E_\mu \text{ are } \sigma\text{-stable}, \\ (2) \quad \mathcal{P}((0, 1]) \text{ is generated by } \mathcal{E} \text{ as the extension closure.} \end{array}$

Theorem [O] (conjectured by [Dimitrov–Katzarkov]) For any $\sigma \in \operatorname{Stab}(\mathcal{D}^b(\vec{\Delta}))$, \exists full σ -exceptional collection.

As a corollary, $\operatorname{Stab}(\mathcal{D}^b(\vec{\Delta}))$ is described by $\mathcal{B}(f)$.

Theorem [O]

For
$$\mathcal{E} = (E_1, \ldots, E_\mu) \in \text{FEC}(\vec{\Delta})$$
, put

Mutation:

The Braid group Br_{μ} acts on the set $FEC(\vec{\Delta})$.

On the other hand,

Picard–Lefschetz transformations:

The Braid group Br_{μ} also acts on the set $\mathcal{B}(f)$.

Theorem [Gusein-Zade, Seidel]

 $\exists \operatorname{Br}_{\mu}$ -equivariant bijection

 $\mathcal{B}(f) \xrightarrow{1:1} \operatorname{FEC}(\vec{\Delta}), \ \mathcal{L} \mapsto \mathcal{E}_{\mathcal{L}}$

2. Stability Condition

"Definition" (Bridgeland)

 $\Theta_{\mathcal{E}} \coloneqq \{ \sigma \in \operatorname{Stab}(\mathcal{D}^{b}(\vec{\Delta})) \mid E_{1}, \dots, E_{\mu} \text{ are } \sigma\text{-stable} \}.$ The finite set $\{\Theta_{\mathcal{E}_{\mathcal{L}}}\}_{\mathcal{L}\in\mathcal{B}(f)}$ is an open covering : $\operatorname{Stab}(\mathcal{D}^{b}(\vec{\Delta})) = \bigcup_{\mathcal{L}\in\mathcal{B}(f)} \Theta_{\mathcal{E}_{\mathcal{L}}}.$

3. Problem

In our setting, the homological mirror symmetry was proved by Kajiura–Saito–Takahashi and Seidel:

 $\exists (W, G_W)$: invertible polynomial with a group (Landau–Ginzburg orbifold)

 $\mathrm{HMF}_{S}^{L_{W}}(W) \simeq \mathcal{D}^{b}(\vec{\Delta}) \simeq \mathcal{D}^{b}\mathrm{Fuk}^{\rightarrow}(f).$

As an analogue of the Gromow–Witten theory, one can consider the Fan–Jarvis–Ruan–Witten theory for (W, G_W) .

A stability condition (Z,\mathcal{P}) on $\mathcal D$ consists of

- a group homomorphism $Z \colon K_0(\mathcal{D}) \longrightarrow \mathbb{C}$ and,
- a family of additive full subcategories $\mathcal{P} = \{\mathcal{P}(\phi)\}_{\phi \in \mathbb{R}}$

satisfying some axioms.

$$\sigma = (Z, \mathcal{P}): \text{ stability condition on } \mathcal{D}.$$
$$E \in \mathcal{D}: \sigma \text{-stable} \stackrel{\text{def}}{\iff} E \in \mathcal{P}(\phi) \text{ is simple for some } \phi \in \mathbb{R}$$

$$\operatorname{Stab}(\mathcal{D}) \coloneqq \{ \mathsf{stability} \ \mathsf{condition} \ \mathsf{on} \ \mathcal{D} \}$$

The FJRW theory for (W, G_W) is isomorphic to the Saito theory for f with a primitive form ζ as Frobenius manifolds.

Problem

s.t.

How do we obtain the FJRW theory for (W, G_W) from Stab $(HMF_S^{L_W}(W))$? In other words, how do we obtain the Saito theory for fwith a primitive form ζ from Stab $(D^bFuk^{\rightarrow}(f))$?

 $\rightsquigarrow \mathsf{Need} \mathsf{ to study} \ \mathcal{Z} \colon \mathrm{Stab}(\mathcal{D}^b(\vec{\Delta})) \to \mathrm{Hom}_{\mathbb{Z}}(K_0(\mathcal{D}^b(\vec{\Delta})), \mathbb{C})!$

Invitation to Recursion, Resurgence and Combinatorics